Compton Gamma Ray Observatory

Compton Gamma Ray Observatory
General information
NSSDC ID 1991-027B
Organization NASA
Major contractors TRW
Launch date 5 April 1991
Launched from Kennedy Space Center
Launch vehicle Space Shuttle Atlantis STS-37
Mission length 9 years, 2 months
Deorbited 4 June 2000
Mass 17,000 kg (37,000 lb)
Orbit height 450 km (280 mi)
Orbit period 90 min (1.5 h)
Telescope style Scintillation detectors
Wavelength Gamma
Diameter N/A
Collecting area Varies by instrument
Focal length N/A
Instruments
BATSE all-sky monitor
OSSE pointed detectors
COMPTEL imaging telescope
EGRET wide field telescope
Website NASA Compton Gamma Ray Observatory

The Compton Gamma Ray Observatory (CGRO) was a space observatory detecting light from 20 KeV to 30 GeV in Earth orbit from 1991 to 2000. It featured four main telescopes in one spacecraft covering x-rays and gamma-rays, including various specialized sub-instruments and detectors. Following 14 years of effort, the observatory was launched on the Space Shuttle Atlantis, mission STS-37, on 5 April 1991 and operated until its deorbit on 4 June 2000.[1] It was deployed in low earth orbit at 450 km (280 mi) to avoid the Van Allen radiation belt. It was the heaviest astrophysical payload ever flown at that time at 17,000 kilograms (37,000 lb).

The CGRO is part of NASA's Great Observatories series, with the Hubble Space Telescope, the Chandra X-ray Observatory, and the Spitzer Space Telescope.[2] It was the second of the NASA "Great Observatories" to be launched to space, following the Hubble Space Telescope. CGRO was named after Dr. Arthur Holly Compton (Washington University in St. Louis), Nobel prize winner, for work involved with gamma ray physics. CGRO was built by TRW (now Northrop Grumman Aerospace Systems) in Redondo Beach, CA. CRGO was an international collaboration and additional contributions came from the European Space Agency and various Universities, as well as the U.S. Naval Research Laboratory,

Contents

Instruments

CGRO carried a complement of four instruments that covered an unprecedented six decades of the electromagnetic spectrum, from 20 keV to 30 GeV (from 0.02 MeV to 30000 MeV). In order of increasing spectral energy coverage:

BATSE

OSSE

COMPTEL

Comparison
Instrument Observing
BATSE 0.02 - 8 MeV
OSSE 0.05 - 10 MeV
COMPTEL 0.75 - 30 MeV
EGRET 20 - 30 000 MeV

EGRET

Results

Basic results

GRB 990123

Gamma ray burst 990123 (23 January 1999) was one of the brightest bursts recorded at the time, and was the first GRB with an optical afterglow observed during the prompt gamma ray emission (a reverse shock flash). This allowed astronomers to measure a redshift of 1.6 and a distance of 3.2 Gpc (10 Gly). Combining the measured energy of the burst in gamma-rays and the distance, the total emitted energy assuming an isotropic explosion could be deduced and resulted in the direct conversion of approximately two solar masses into energy. This finally convinced the community that GRB afterglows resulted from highly collimated explosions, which strongly reduced the needed energy budget.

Miscellaneous results

De-orbit

After one of its gyroscopes failed, the observatory was deliberately de-orbited. At the time, the observatory was still operational, however the failure of another gyroscope would have made de-orbiting much more difficult and dangerous. With some controversy, NASA decided in the interest of public safety that a controlled crash was preferable to letting the craft come down on its own at random. Unlike the Hubble Space Telescope, it was not designed for on-orbit repair and refurbishment. It entered the Earth's atmosphere on 4 June 2000, with the debris that did not burn up falling harmlessly into the Pacific Ocean.

This de-orbit was NASA's first intentional controlled de-orbit of a satellite. [4]

References

External links